Last year’s increase was due to an unusual amount of ocean warming, combined with meltwater from land-based ice such as glaciers.
Global sea level rose faster than expected in 2024, mostly because of ocean water expanding as it warms, or thermal expansion. According to a NASA-led analysis, last year’s rate of rise was 0.23 inches (0.59 centimeters) per year, compared to the expected rate of 0.17 inches (0.43 centimeters) per year.
“The rise we saw in 2024 was higher than we expected,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “Every year is a little bit different, but what’s clear is that the ocean continues to rise, and the rate of rise is getting faster and faster.”
In recent years, about two-thirds of sea level rise was from the addition of water from land into the ocean by melting ice sheets and glaciers. About a third came from thermal expansion of seawater. But in 2024, those contributions flipped, with two-thirds of sea level rise coming from thermal expansion.
“With 2024 as the warmest year on record, Earth’s expanding oceans are following suit, reaching their highest levels in three decades,” said Nadya Vinogradova Shiffer, head of physical oceanography programs and the Integrated Earth System Observatory at NASA Headquarters in Washington.
Since the satellite record of ocean height began in 1993, the rate of annual sea level rise has more than doubled. In total, global sea level has gone up by 4 inches (10 centimeters) since 1993.
This long-term record is made possible by an uninterrupted series of ocean-observing satellites starting with TOPEX/Poseidon in 1992. The current ocean-observing satellite in that series, Sentinel-6 Michael Freilich, launched in 2020 and is one of an identical pair of spacecraft that will carry this sea level dataset into its fourth decade. Its twin, the upcoming Sentinel-6B satellite, will continue to measure sea surface height down to a few centimeters for about 90% of the world’s oceans.
There are several ways in which heat makes its way into the ocean, resulting in the thermal expansion of water. Normally, seawater arranges itself into layers determined by water temperature and density. Warmer water floats on top of and is lighter than cooler water, which is denser. In most places, heat from the surface moves very slowly through these layers down into the deep ocean.
But extremely windy areas of the ocean can agitate the layers enough to result in vertical mixing. Very large currents, like those found in the Southern Ocean, can tilt ocean layers, allowing surface waters to more easily slip down deep.
The massive movement of water during El Niño — in which a large pool of warm water normally located in the western Pacific Ocean sloshes over to the central and eastern Pacific — can also result in vertical movement of heat within the ocean.
Learn more about sea level:
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
2025-036